PART - A

Answer ALL the questions

($10 \times 2=20$ marks $)$

1. Find the nth derivative of $\sin ^{3} 2 x$.
2. Show that in the parabola $y^{2}=4$ ax, the subtangent at any point is double the abscissa.
3. Find the radius of curvature of $x^{4}+y^{4}=2$ at $(1,1)$.
4. Give the coordinates of the centre of curve line at any point.
5. Form an equation with rational coefficients having $\sqrt{2}+1$ as a root.
6. If α, β, γ are the roots of $x^{3}+p x^{2}+q x+r=0$ then find the value of $\alpha^{2}+\beta^{2}+\gamma^{2}$.
7. Show that $1-\tanh ^{2} x=\operatorname{Sech}^{2} x$.
8. Evaluate $\lim _{\theta \rightarrow 0} \frac{\sin 3 \theta}{\sin 2 \theta}$.
9. Find the polar of the point $(1,2)$ on $y^{2}=4 x$.
10. Give the condition of the diameters $y=m_{1} x$ and $y=m_{2} x$ of an ellipse to be conjugate.

PART - B

Answer any FIVE questions ($5 \times 8=40$ marks)
11. State and prove Leibnitz theorem on the nth derivative of a product of two functions.
12. Show that in the curve $r=a e^{\theta \cot \alpha}$, the tangent is inclined at a constant angle to the raduis vector.
13. Find the minimum value of $x^{2}+5 y^{2}-6 x+10 y+12$.
14. Find the raduis of curvature at the point θ on $x=a(\cos \theta+\theta \sin \theta)$; $\mathbf{y}=\mathbf{a}(\sin \theta-\theta \cos \theta)$.
15. Show that if the roots of $x^{3}+p x^{2}+q x+r=0$ are in A.P. then $2 p^{3}-9 p q+27 r=0$.
16. Solve $x^{4}-4 x^{2}+8 x+35=0$ given that $2+i \sqrt{3}$ is a root.
17. Expand $\sin ^{3} \theta \cos ^{4} \theta$ in terms of sines of multiples of θ.
18. If P and D are the extremities of a pair of conjugate diameters of $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, find the locus of the midpoint of PD.

PART - C

Answer any TWO questions ($\mathbf{2} \times 20=40$ marks)
19. a) If $y=\left[\log \left(x+\sqrt{x^{2}+1}\right)\right]^{2}$ then show that $\left(1+x^{2}\right) y_{n+2}+(2 n+1) x y_{n+1}+$ $\boldsymbol{n}^{2} \boldsymbol{y}_{\boldsymbol{n}}=0$.
b) Show that $\mathbf{r}=\operatorname{asec}^{2} \frac{\theta}{2}$ and $r=b \operatorname{cosec}^{2} \frac{\theta}{2}$ intersect at right angles.
20. a) Find the maximum and minimum of $3 x^{2}+4 y^{2}-x y$ if $2 x+y=21$.
b) Find the $\mathbf{p}-\mathrm{r}$ equation of $\frac{2 a}{r}=1-\cos \theta$ with respect to the focus as pole.

$$
(10+10)
$$

21. a) Solve: $6 x^{5}+11 x^{4}-33 x^{3}-33 x^{2}+11 x+6=0$.
b) Find the positive root of $x^{3}+24 x=50$ to two places of decimals using Horner's method.
22. a) If $\sin (\theta+i \phi)=\tan \alpha+i \sec \alpha$ then show that $\cos 2 \theta \cosh 2 \phi=3$.
b) Show that the locus of poles with respect to $y^{2}=4 a x$ of tangents to $x^{2}-y^{2}=a^{2}$ is an ellipse.
