MT 1500 ALGEBRA, ANAL GEOM, CAL. & Tring.

<u> PART – A</u>

Answer ALL the questions

(10 x 2 = 20 marks)

 $(5 \times 8 = 40 \text{ marks})$

- 1. Find the nth derivative of $\sin^3 2x$.
- 2. Show that in the parabola $y^2 = 4$ ax, the subtangent at any point is double the abscissa.
- 3. Find the radius of curvature of $x^4 + y^4 = 2$ at (1, 1).
- 4. Give the coordinates of the centre of curve line at any point.
- 5. Form an equation with rational coefficients having $\sqrt{2} + 1$ as a root.
- 6. If α , β , γ are the roots of $x^3 + px^2 + qx + r = 0$ then find the value of $\propto^2 + \beta^2 + \gamma^2$.
- 7. Show that $1 \tanh^2 x = \operatorname{Sech}^2 x$.
- 8. Evaluate $\lim_{\theta \to 0} \frac{\sin 3\theta}{\sin 2\theta}$.
- 9. Find the polar of the point (1, 2) on $y^2 = 4x$.
- 10. Give the condition of the diameters $y = m_1 x$ and $y = m_2 x$ of an ellipse to be conjugate.

<u> PART – B</u>

Answer any FIVE questions

- 11. State and prove Leibnitz theorem on the nth derivative of a product of two functions.
- 12. Show that in the curve $r = ae^{\theta cot\alpha}$, the tangent is inclined at a constant angle to the raduis vector.
- 13. Find the minimum value of $x^2 + 5y^2 6x + 10y + 12$.
- 14. Find the raduis of curvature at the point θ on $x = a (\cos\theta + \theta \sin\theta)$; $y = a (\sin\theta - \theta \cos\theta)$.
- 15. Show that if the roots of $x^3 + px^2 + qx + r = 0$ are in A.P. then $2p^3 - 9pq + 27r = 0$.
- 16. Solve $x^4 4x^2 + 8x + 35 = 0$ given that $2 + i\sqrt{3}$ is a root.
- 17. Expand $\sin^3 \theta \cos^4 \theta$ in terms of sines of multiples of θ .
- 18. If P and D are the extremities of a pair of conjugate diameters of $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, find the locus of the midpoint of PD.

$\underline{PART - C}$

Answer any TWO questions 19. a) If $y = [\log(x + \sqrt{x^2 + 1})]^2$ then show that $(1+x^2)y_{n+2} + (2n+1)xy_{n+1} + (2n+1)xy_{n+1}]^2$ $n^2 y_n = 0.$ b) Show that $r = a \sec^2 \frac{\theta}{2}$ and $r = b \csc^2 \frac{\theta}{2}$ intersect at right angles. (10+10)

- 20. a) Find the maximum and minimum of $3x^2 + 4y^2 xy$ if 2x + y = 21.
 - b) Find the p r equation of $\frac{2a}{r} = 1 \cos \theta$ with respect to the focus as pole.

(10 + 10)

- 21. a) Solve: $6x^5 + 11x^4 33x^3 33x^2 + 11x + 6 = 0$.
 - b) Find the positive root of $x^3 + 24x = 50$ to two places of decimals using Horner's method. (10 + 10)
- 22. a) If $\sin(\theta + i\phi) = \tan \alpha + i \sec \alpha$ then show that $\cos 2\theta \cosh 2\phi = 3$.
 - b) Show that the locus of poles with respect to $y^2 = 4$ ax of tangents to $x^2 y^2 = a^2$ is an ellipse. (10+10)

$(2 \times 20 = 40 \text{ marks})$